Understanding Transpose

Posted by yaohong on Tuesday, December 22, 2020

TOC

Understanding Numpy Transpose

1.Transpose is to switch the row and column indices of the matrix A;

x = np.arange(8).reshape((4,2))
print(x)
print(x.T)
# output:
# [[0 1] # x
#  [2 3]
#  [4 5]
#  [6 7]]
# [[0 2 4 6] # x.T
#  [1 3 5 7]]

x = np.arange(9).reshape((3,3))
print(x)
print(x.T)
print(x.shape, x.T.shape)
# output:
# [[0 1 2]
#  [3 4 5]
#  [6 7 8]]
# [[0 3 6]
#  [1 4 7]
#  [2 5 8]]

x = np.arange(8).reshape((2,4))
print(x)
print(x.T)
# output:
# [[0 1 2 3]
#  [4 5 6 7]]
# [[0 4]
#  [1 5]
#  [2 6]
#  [3 7]]

If the array has only one dimension, the transpose of the array will not change;

x = np.arange(8).reshape((8))
print(x) 	# output: [0 1 2 3 4 5 6 7]
print(x.T) 	# output: [0 1 2 3 4 5 6 7]

Flips the shape

2.Transpose a array will switch the shape number along the central axis; for example:

import numpy as np
x = np.arange(8).reshape((8))
print(x.shape, x.T.shape) # output: (8,) (8,)

x = np.arange(8).reshape((2,4))
print(x.shape, x.T.shape) # output: (2, 4) (4, 2)

x = np.arange(24).reshape((2,3,4))
print(x.shape, x.T.shape) # output: (2, 3, 4) (4, 3, 2)

x = np.arange(120).reshape((2,3,4,5))
print(x.shape, x.T.shape) # output: (2, 3, 4, 5) (5, 4, 3, 2)

REFERENCE: 1.Transpose

「点个赞」

Yaohong

点个赞

使用微信扫描二维码完成支付